

Tetrahedron Letters 41 (2000) 5693-5697

TETRAHEDRON LETTERS

Synthetic studies on kinamycin antibiotics: elaboration of a highly oxygenated D-ring

Takuya Kumamoto,^a Nobutaka Tabe,^a Kentaro Yamaguchi^b and Tsutomu Ishikawa^{a,*}

^aFaculty of Pharmaceutical Sciences, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan ^bChemical Analysis Center, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan

Received 1 May 2000; revised 29 May 2000; accepted 2 June 2000

Abstract

The synthesis of the model compound of kinamycin antibiotics, which possesses correct relative configurations at C(1)-C(4) on the D-ring, is reported. The key steps involve a Diels–Alder reaction of an indenone and a Danishefsky-type diene, and stereoselective construction of a tetraoxygenated D-ring. \bigcirc 2000 Elsevier Science Ltd. All rights reserved.

Kinamycins were isolated from the culture broth of *Streptomyces murayamaensis* sp. nov. Hata and Ohtani by Omura et al.¹ and are strongly active against gram-positive bacteria but less so against gram-negative bacteria. The structures had been characterized as benzo[b]carbazoloquinone N-cyanamides $(1)^2$ with a highly oxygen-functionalized D-ring. Kinamycins were found to be biosynthetically derived from dehydrorabelomycin (3) through prekinamycin.³

Problems still remain for the determination of the substituent pattern at 11 position in the C ring (atoms X and Y). The reported data of IR (2150 cm⁻¹) and ¹³C NMR (δ_C 78 ppm) for kinamycins poorly agreed with those of typical *N*-cyanoindoles (2237–2245 cm⁻¹, δ_C 105–108 ppm).⁴ Thus, Gould et al.⁵ and Dmitrienko et al.⁶ independently reported the revision of the *N*-cyanamide structures (1 for kinamycins, 4 for prekinamycin) to diazonium structures (2 for kinamycins, 5 for prekinamycin), based on further X-ray crystallographic studies and synthetic work for 4, respectively. However, in spite of the accepted structures 2 for kinamycins, Gould doubted the structure 5 for prekinamycin due to some discrepancies between a synthetic compound 5 and a natural prekinamycin (Fig. 1).⁷

These situations led us try to determine the structures of kinamycins by the synthesis of compounds with the structures 2. We first planned the stereoselective synthesis of a model

^{*} Corresponding author. E-mail: benti@p.chiba-u.ac.jp

compound **6** as shown in Scheme 1, in which a Diels–Alder reaction between an indenone **8** and a Danishefsky-type diene **9** was involved as a key step for the elaboration of a highly oxygenated cyclohexene ring.⁸ In this paper, we report the first successful construction of a 3,4,5,6-tetra-oxygenated cyclohexene ring with a correct relative configuration (*cis, trans, trans* for hydroxy groups) in a kinamycin skeleton.

Diels–Alder reaction of 8^9 and 9^{10} by refluxing in benzene smoothly afforded *endo* adduct 7.¹¹ Desilylation of 7 under acidic conditions gave enone 10,¹² a doubly activated position at C(9a) which was found to be easily oxygenated by molecular oxygen (O₂). Thus, treatment of 10 in DMSO under O₂ atmosphere in the presence of a catalytic amount of potassium fluoride¹³ afforded γ -hydroxyenone 11¹⁴ in 63% yield from 8. Hydroxyenone 11 was converted to the corresponding silyl dienol ether 12, which was treated with OsO₄–NMO system followed by acidic work-up to afford a 5:1 mixture of 1,3-diols 13a and 13b. The mixture was subjected to

Figure 2. Direction of dihydroxylation with OsO_4 in the possible boat-like conformation of 15

Figure 3. X-Ray structure of 18. Alkyl groups on TBS were omitted for clarity

Scheme 2. (a) 9, benzene, reflux, 2 h; (b) CSA, CH_2Cl_2 , 0°C, 15 min; (c) O₂, KF (0.1 equiv.), DMSO, rt, 3 h; (d) TMSOTf, Et_3N , CH_2Cl_2 , 0°C, 15 min; (e) (i) OsO₄ (0.05 equiv.), NMO, THF–H₂O (20:1), 0°C, 1 h, then rt, 24 h; (ii) 10% HCl; (f) DIBAL-H, THF, -78°C, 30 min, then recrystallization; (g) TBSCl, Et_3N , DMF, 50°C, 2.5 h; (h) OsO₄ (1 equiv.), pyridine, rt, 1 day; (i) 2,2-dimethoxypropane, acetone (5:1), TsOH·H₂O, 60°C, 19 h; (j) TBAF, THF, 0°C, 30 min; (k) PDC, CH_2Cl_2 , rt, 24 h; (l) NaH, THF, rt, 1 h, then CS₂, rt, 1 h, then CH₃I, rt, 1 h; (m) 300°C, 20 mmHg (Kugelrohr), 15 min; (n) NH₂NH₂·H₂O, EtOH, reflux, 2 h; (o) Ag₂O, KOH (cat.), Et_2O , rt, 3 h

reduction with 4.5 equiv. of DIBAL-H in THF at -78° C followed by recrystallization from ethanol to give tetraol 14 with a correct stereochemical relationship¹⁵ at C(3) and C(4). Protection of tetraol 14 with TBSCl gave tri-TBS ether 15. The application of Kishi's prediction for the direction of dihydroxylation in allylic alcohol functions to 15 suggested the reaction from β -face.¹⁶ However, no coupling between 3-H and 4-H and a small coupling constant (J=3.4 Hz) between 4-H and 4a-H of 15 indicated a diaxial orientation of the OTBS groups at C(3) and C(4) due to the steric repulsion. In this situation, the concave face in 15 would be severely shielded by axial C(3)-OTBS group and C(9)-H in the possible boat-like conformation (Fig. 2). Thus, treatment of tri-TBS ether 15 in pyridine with a stoichiometric amount¹⁷ of OsO₄ gave triol 16 with a desired configuration.¹⁸

Selective ketalization of triol **16** followed by desilylation with an equimolar amount of TBAF afforded diol **18** as only one isomer. The structure of **18** was determined by X-ray crystallography (Fig. 3). Oxidation of **18** with PDC gave α -hydroxyketone **19**, which was converted to the corresponding xanthate **20**. Pyrolysis of **20** under vacuum gave enone **21**. **21** was treated with hydrazine hydrate in ethanol to afford hydrazone **22** as a ca. 1:1 mixture of (*E*)- and (*Z*)-isomers. The mixture was dehydrogenated with Ag₂O in the presence of a catalytic amount of KOH to give a desired 9-diazotetrahydrofluorene **23** (Scheme 2). The absorption at 2067 cm⁻¹ in the IR spectrum of **23** is in the range for those of the typical diazo compounds.¹⁹

In summary, we have succeeded in the elaboration of a highly oxygenated D-ring with correct stereochemistries for the kinamycin skeleton. Currently our efforts continue to improve ineffective steps and to complete the enantioselective total synthesis of kinamycins.

Acknowledgements

This research was partially supported by Scientific Research Grants from the Ministry of Education, Science, Sport and Culture of Japan.

References

- (a) Ito, S.; Matsuya, T.; Omura, S.; Otani, M.; Nakagawa, A.; Takeshima, H.; Iwai, Y.; Ohtani, M.; Hata, T. J. Antibiot. 1970, 23, 315–317. (b) Hata, T.; Omura, S.; Iwai, Y.; Nakagawa, A.; Otani, M.; Ito, S.; Matsuya, T. J. Antibiot. 1971, 24, 353–359.
- (a) Omura, S.; Nakagawa, A.; Yamada, H.; Hata, T.; Furusaki, A.; Watanabe, T. *Chem. Pharm. Bull.* 1971, 19, 2428–2430. (b) Omura, S.; Nakagawa, A.; Yamada, H.; Hata, T.; Furusaki, A.; Watanabe, T. *Chem. Pharm. Bull.* 1973, 21, 931–940. (c) Furusaki, A.; Matsui, M.; Watanabe, T.; Omura, S.; Nakagawa, A.; Hata, T. *Isr. J. Chem.* 1972, 10, 173–187.
- 3. Recent review: Gould, S. J. Chem. Rev. 1997, 97, 2499-2509.
- Dmitrienko, G. I.; Nielsen, K. E.; Steingart, C.; Ming, N. S.; Willson, J. M.; Weeratunga, G. Tetrahedron Lett. 1990, 31, 3681–3684.
- 5. Gould, S. J.; Tamayo, N.; Melville, C. R.; Cone, M. C. J. Am. Chem. Soc. 1994, 116, 2207-2208.
- 6. Mithani, S.; Weeratunga, G.; Taylor, N. J.; Dmitrienko, G. I. J. Am. Chem. Soc. 1994, 116, 2209-2210.
- (a) Hauser, F. M.; Zhou, M. J. Org. Chem. 1996, 61, 5722. (b) Gould, S. J.; Chen, J.; Cone, M. C.; Gore, M. P.; Melville, C. R.; Tamayo, N. J. Org. Chem. 1996, 61, 5720–5721.
- Many approaches for the synthesis of 4, 5 and their analogues were carried out, but each cannot be applied to the synthesis of 2 because the aromatized synthons for the D-ring were employed. For examples: Ref. 7a. (a) Mal, D.; Hazra, N. K. *Tetrahedron Lett.* 1996, *37*, 2641–2642. (b) Williams, W.; Sun, X.; Jebaratnam, D. J. Org. Chem. 1997, *62*, 4364–4369. (c) Mohri, S.; Stefinovic, M.; Snieckus, V. J. Org. Chem. 1997, *62*, 7072–7073.

- Indenone 8 was prepared from 4-benzyloxy-1-indanone by dehydrosilylation of the corresponding silyl enol ether with Pd(OAc)₂-p-benzoquinone system. Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. 1978, 43, 1011–1013.
- 10. Danishefsky, S.; Yan, C.-F.; Singh, R. K.; Gammill, R. B.; McCurry Jr., P. M.; Fritsch, N.; Clardy, J. J. Am. Chem. Soc. 1979, 101, 7001–7008.
- 11. The numbering of compounds 6–7 and 10–23 is based on that of fluorene.
- 12. Compounds 7 and 10 were yielded quantitatively and used in the next steps without further purification.
- 13. Irie, H.; Katakawa, J.; Tomita, M.; Mizuno, Y. Chem. Lett. 1981, 637-640.
- 14. The position of the hydroxy group introduced in **11** was determined by the observation of a cross peak between 4a-H ($\delta_{\rm H}$ 3.92 ppm) and C(9a) ($\delta_{\rm C}$ 78.5 ppm) in the HMBC experiments.
- 15. The stereochemistry was confirmed by NOE experiments of the corresponding bis(isopropylidene ketal).
- 16. Cha, J. K.; Christ, W. J.; Kishi, Y. Tetrahedron 1984, 40, 2247-2255.
- 17. Use of OsO₄-NMO system resulted in recovery of 15.
- 18. The relative configration of 16 was determined by the X-ray crystallography.
- 19. IR data for diazocyclopentadiene: 2089 cm⁻¹. Regitz, M.; Maas, G. *Diazo Compounds, Properties and Synthesis*; Academic: Orlando, 1986; Chapter 1.